Single Pure - Translation Of Curves

In any curve, y = f(x), if every x is replaced by x - a, then the original curve will translate a units to the right. For example $y = x^2$ is translated 3 units to the left to make $y = (x + 3)^2 = x^2 + 6x + 9$. In any curve if, every y is replaced by y - b, then the original curve will translate b units up. For example to translate $x^2 + (y - 2)^2 = 16$ 10 units up we replace y by y - 10 to gain $x^2 + (y - 12)^2 = 16$.

Remember that a translation can be described by means of a translation vector, so $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ is the translation 3 to the right and 2 down. So here we would replace x by x - 3 and y by y + 2.

- 1. Find the equation of the given curves after the desired translation.
 - (a) $y = x^2$ after translation $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
 - (b) $y = 2x^2$ after translation $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (c) $y = x^2 + 2x$ after translation $\binom{3}{1}$. [Multiply out your answer.]
 - (d) $y = \sin x$ after translation $\begin{pmatrix} -90 \\ -1 \end{pmatrix}$.
 - (e) y = 2x + 3 after translation $\begin{pmatrix} 10\\ \frac{1}{2} \end{pmatrix}$.
 - (f) $y = ax^2 + bx + c$ after translation $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. [Multiply out your answer.]
 - (g) $x^2 + y^2 = 4$ after translation $\binom{1}{2}$. [Describe the shape of the curve after the translation.]
 - (h) $(x-2)^2 + (y+3)^2 = 16$ after translation $\binom{3}{-2}$. [Describe the shape of the curve after the translation.]
 - (i) 2y + 3x = 7 after translation $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$.
 - (j) $xy + x^2 + y^2 = 1$ after translation $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. [Multiply out your answer.]
- 2. Describe fully the transformation that maps the first curve onto the second.
 - (a) y = 2x onto y 3 = 2x. (b) $y = \sqrt{x}$ onto $y - 2 = \sqrt{x + 3}$. (c) $y = \sqrt{x - 1}$ onto $y = \sqrt{x} + 3$. (d) $y = x^{2}$ onto $y = x^{2} + 4$. (e) $y = x^{2}$ onto $y = x^{2} + 4x$. (f) $y = \frac{2}{x-3}$ onto $y = \frac{2}{x}$. (g) $x^{2} + (y - 6)^{2} = 16$ onto $(x - 6)^{2} + y^{2} = 16$.
- 3. Find the translation that maps the first quadratic onto the second.
 - (a) $y = x^2$ onto $y = x^2 + 4x + 4$.
 - (b) $y = x^2 + 4x$ onto $y = x^2 + 6x + 1$.
 - (c) $y = x^2 8x + 1$ onto $y = x^2 + 2x$.
 - (d) $y = x^2 + 7x$ onto $y = x^2 + x + 1$.
 - (e) $y = 2x^2 + 8x 1$ onto $y = 2x^2 + 16x 3$.
 - (f) $y = 2x^2 + 2x$ onto $y = 2x^2 + 3x 4$.
- 4. (a) Differentiate $y = \sqrt{x}$.
 - (b) Describe the transformation that maps $y = \sqrt{x}$ onto $y = \sqrt{x-3}$.

- (c) Using the above results, explain why the gradient of $y = \sqrt{x}$ when x = 9 must be the same as the gradient of $y = \sqrt{x-3}$ when x = 12.
- (d) Hence find the equation of the tangent to the curve $y = \sqrt{x-3}$ when x = 12.
- 5. By using a similar argument to the above on the curve

$$y=\frac{1}{x},$$

find the equation of the tangent to

$$y = \frac{1}{x - 10}$$

when x = 12.